NINE-VERTEX POLYHEDRAL MONOAZABORANE CHEMISTRY: SYNTHESIS AND NMR CHARACTERIZATION OF *exo*-6-LIGAND-*arachno*-4-AZANONABORANES(11), 6-L-4-NB₈H₁₁*

Tomas JELINEK^{*a*}, Bohumil STIBR^{*a*,**,***} and John D. KENNEDY^{*b*}

^a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Rez near Prague, The Czech Republic ^b School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

> Received May 31, 1994 Accepted June 28, 1994

Reactions between *arachno*-4-NB₈H₁₃ and Lewis bases L in dichloromethane or without solvent generate the previously unreported series of *arachno* compounds *exo*-6-L-*arachno*-4-NB₈H₁₁, where L = pyridine (py), quinoline (quin), isoquinoline (i-quin), urotropine (uro), and MeCN. These are characterized by mass spectrometry together with ¹¹B and ¹H NMR spectroscopy. The NMR results permit complete assignment of all resonances and thence permit comparison with the structurally similar compounds *exo*-6-L-*arachno*-4-EB₈H₁₀ (for E = CH₂ or S).

We have a continuing and developing interest in the synthesis, NMR properties, structural characterization, and reactions of the nine-vertex Group 14, 15, and 16 polyhedral heteroboranes^{1–13}, with special emphasis so far on the *arachno* nine-vertex monocarbaborane^{3,4}, monoazaborane^{5–8} and monothiaborane^{9–12} families. Of these, we have previously reported on the *arachno*-4-CB₈H₁₄ (refs^{3,4}), 6-L-*arachno*-4-CB₈H₁₂ (ref.¹³), *arachno*-4-NB₈H₁₃ (refs^{5–8}), *arachno*-4-SB₈H₁₂ (refs^{9,11}), and 6-L-*arachno*-4-SB₈H₁₀ (ref.¹²) systems. One of the key compounds for the further development of nine-vertex *arachno* heteroborane chemistry is the parent unsubstituted *arachno*-4-azanonaborane(13), 4-NB₈H₁₃ (compound *Ia* of the EB₈H₁₂ type *A* for E = NH).

This essential basic azaborane was first isolated almost two decades ago, and was also at that time structurally characterized⁵. However, apart from alternative preparative routes^{5–7}, any further non-metallic chemistry has so far been unexamined. We

** The author to whom correspondence should be addressed.

^{*} Contribution No. 48 from the Rez-Leeds Anglo-Czech Polyhedral Collaboration (A.C.P.C.).

^{***}Present address: Consejo Superior de Investigationes Cientificas, Institut de Ciencia de Materials, Campus de la UAB. 08193-Bellaterra, Espana.

have now therefore developed this area somewhat by the exploration of the reactions of compound *Ia* with Lewis bases. This has led to the isolation of a previously unreported family of compounds of general constitution *exo*-6-L-*arachno*-4-NB₈H₁₁ (compounds *IIa* – *IIe*, of general structure *B*), which we now describe in this paper.

EXPERIMENTAL

General

Unless otherwise stated, all reactions were carried out under nitrogen though some subsequent operations, e.g., analytical thin layer chromatography (TLC), preparative TLC, and column chromatography, were carried out in air. The parent azaborane *Ia* was prepared by a literature method⁷. Hexane, dichloromethane and benzene were distilled from calcium hydride, and acetonitrile from P_4O_{10} , prior to use. Other compounds were of reagent or analytical grade and were used as purchased. All evaporations of solvents were carried out using standard rotary evaporation techniques and vacuum filtrations were performed using standard Schlenk apparatus. Preparative TLC was carried out using silica gel (Fluka GF 254) as the stationary phase on plates of dimensions $200 \times 200 \times 1$ mm, made on glass formers from aqueous slurries followed by drying in air at 80 °C. The purity of individual chromatographic fractions was checked by analytical TLC on Silufol (Kavalier, silica gel on aluminium foil; detection by diiodine vapor, followed by 2% aqueous AgNO₃ spray).

Physical Measurements

Low resolution mass spectra were obtained using a JEOL HP-5985 instrument (70 eV EI, ionisation). Proton (¹H) and boron (¹¹B) NMR spectroscopy was performed at 9.4 Tesla on a Bruker AM 400

Collect. Czech. Chem. Commun. (Vol. 59) (1994)

instrument. The [¹¹B-¹¹B]-COSY and ¹H-{¹¹B(selective)} NMR experiments were essentially as described in other recent papers from our laboratories^{14,15}. Chemical shifts are given in ppm to highfrequency (low field) of $\Xi = 32.083971$ MHz (nominally F₃B . OEt₂ in CDCl₃) for ¹¹B (quoted ±0.5 ppm) and $\Xi = 100$ MHz (SiMe₄) for ¹H (quoted ±0.05 ppm), Ξ being defined as in ref.¹⁶. Solvent resonances were used as internal secondary standards. Coupling constants ¹J(¹¹B-¹H) are taken from resolution-enhanced ¹¹B spectra with digital resolution 8 Hz and are given in Hz.

General Synthesis of the Compounds *arachno*-6-L-*arachno*-4-NB₈H₁₁ (*IIa* – *IIe*) from *arachno*-4-NB₈H₁₃ (*Ia*)

A typical experiment is described. Variations for individual compounds are in Table I. A mixture of compound Ia (114 mg; 1 mmol) and excess Lewis base was dissolved in dichloromethane or benzene (30 cm³) and the solution was heated at reflux for 12 – 24 h (dihydrogen evolution). The volatile components were then evaporated and the solid residue subjected to preparative TLC on silica gel using solvent mixtures as in Table I as the liquid phase. The main fractions of R_F (anal.) as in Table I were collected, evaporated to dryness and then crystallized from a concentrated solution in dichloromethane that was overlayered with a twofold amount of hexane. This yielded crystals which were identified as the compounds *exo*-6-L-*arachno*-4-NB₈H₁₁ (*IIa* – *IIe*) by NMR spectroscopy and mass spectrometry as described below. Analytical products were obtained by repeated crystallization.

RESULTS AND DISCUSSION

Syntheses

We have recently reported^{12,13} on the formation of compounds with the nine-vertex *exo*-6-L-*arachno*-4-EB₈H₁₀ constitution *B*, for E = both CH₂ and S. Of these, the thiaboranes were obtained from the reactions between *arachno*-4-SB₈H₁₂ (*Ib*) and a variety

Reaction conditions Products $m/z(\max)^b$ Base ratio^a solvent time, h product yield, % colour R_F 2 C₆H₆ 24 IIa 72 yellow 0.16^{c} 192 ру 0.20^{d} quin 2 CH₂Cl₂ 12 IIb 82 yellow 242 0.24^{d} i-quin 2 CH_2Cl_2 12 IIc 81 vellow 242 2 C₆H₆ 24 IId 45 white 0.23^{e} 253 uro MeCN excess MeCN 24 IIe 56 white 0.38^{g} 154

TABLE I Products from reactions between *arachno*-4-NB₈H₁₃ (*Ia*) and Lewis bases

^{*a*} Molar ratio base/NB₈H₁₃. ^{*b*} M⁺ under EI mode, with additional fragmentation to $[L^+]$ and $[LBH_3]^+$. ^{*c*} 50% hexane in CH₂Cl₂. ^{*d*} 33% hexane in CH₂Cl₂. ^{*e*} 17% MeCN in CH₂Cl₂. ^{*f*} Carried out in the presence of one molar equivalent of I₂. ^{*g*} CH₂Cl₂.

2246

of Lewis bases L (ref.¹²). This simple reaction suggested to us that the isostructural analogue, arachno-4-NB₈H₁₃ (*Ia*), might behave similarly, and this has proved to be so. Thus, the reactions between *Ia* (reaction scale 1 mmol) and the Lewis bases pyridine (py), quinoline (quin), isoquinoline (i-quin), urotropine (uro), and MeCN in dichloromethane or benzene (or without solvent for MeCN) at reflux temperatures over a period of 12 – 24 h gave the series of isostructural compounds *exo*-6-L-*arachno*-4-NB₈H₁₁, where L = pyridine (*IIa*), quinoline (*IIb*), isoquinoline (*IIc*), urotropine (*IId*), and MeCN (*IIe*), in yields of 45 – 82%. For precise quantities and conditions, see Table I. These were isolatable by preparative TLC, and crystallized from a CH₂Cl₂-hexane mixture. Their molecular formulae were confirmed by mass spectrometry and NMR spectroscopy as described below.

In contrast to the reactions involving the thiaborane compound *Ib*, some weaker Lewis bases, such as SMe₂ and PPh₃, did not give the corresponding azaborane derivatives under similar conditions. Moreover, the reaction with MeCN had to be promoted by the addition of an equivalent amount of I₂, otherwise no derivative *IIe* is formed. In general, the relative reactivity of the *arachno*-4-EB₈H₁₂ compounds of schematic structure *A* [where $E = CH_2$ (*Ic*), NH (*Ia*), and S (*Ib*)] toward Lewis bases generally decreases along the heteroatomic sequence S > N >> C (the carbon analogue does not react at all).

$$NB_{8}H_{13} + L \xrightarrow{fast} [LH]^{+}[NB_{8}H_{12}]^{-} \xrightarrow{slow} LNB_{8}H_{11} + H_{2} \qquad (1)$$

$$Ia \qquad III \qquad IIa - IIe$$

The reaction between *Ia* and Lewis bases is not inconsistent with a simple scheme as in (*I*) that, as in the case of the thiaborane compound¹² *Ib*, would involve an anionic intermediate, here formulated as $[arachno-4-NB_8H_{12}]^-$ (compound *III*). Some insight into the reaction between compound *Ia* and the Lewis bases L may be provided by the results of a reaction in an NMR tube between compound *Ia* and pyridine, carried out in CDCl₃. In this experiment a species provisionally identified as the previously uncharacterized $[arachno-4-NB_8H_{12}]^-$ anion *III* was detected as a predominant product by ¹¹B NMR spectroscopy in the initial stages of the reaction (ca 15 min). Further attack by the [LH]⁺ cation on *III*, or a direct nucleophilic reaction between L and the neutral *Ia*, could then therefore be responsible for the formation of the azaborane compounds of type *B*. We find that anion *III* can also be generated in situ by the deprotonation of *Ia* with "proton sponge" (*N*,*N*,*N'*,*N'*-tetramethylnaphthalene diamine, tmnd) in CDCl₃ in an NMR tube.

The mass spectra of the ligand derivatives IIa - IIe (Table I) exhibited the expected molecular ion peaks and showed principal fragmentations with characteristic $[L]^+$ and $[LBH_3]^+$ molecular ions.

NMR Spectroscopy

All compounds were examined by NMR spectroscopy in order to confirm bulk purity, and in order to measure and assign the observed resonances and to confirm the molecular formulation. ¹¹B and ¹H NMR spectroscopy, making use of the [¹¹B-¹¹B]-COSY (ref.¹⁷) (for characteristic cross-peaks see Table II) and ¹H-{¹¹B(selective)} techniques¹⁸, resulted in the complete assignment of all the ¹H and ¹¹B resonances for compounds *IIa – IIe*. The measured data for the series of new nine-vertex *arachno* azaboranes are in Table II, and illustrative aspects of the ¹¹B and ¹H shielding behaviour are presented graphically in Fig. 1.

The NMR data for all the compounds IIa - IIe are entirely consistent with the general constitution *B*, and also with the results of mass spectrometry. Intercomparison of the ¹¹B shielding patterns (lower part of Fig. 1) reveals a very similar shielding behaviour for all the compounds. Although there are significant differences for the ligand-substituted B(6) site, the long-range substituent effects are very small, and there are only trivial differences in chemical shift for the other positions. The individual $\{\delta^{(11}B),\delta^{(11}H)\}$ data points for all the compounds IIa - IIe (Fig. 1, uppermost diagram) all fall close to a single $\delta^{(11}B):\delta^{(11}H)$ correlation line, except of course for the more highly shielded ¹H(*endo*-6) position, as found also for the isostructural carborane and thiaborane analogs *exo*-6-L-*arachno*-4-EB₈H₁₀ (refs^{12,13}), As expected, intercomparison

-20

-40

 $\delta(^{11}B)$, ppm

-60

Fig. 1

The upper diagram is a plot of $\delta({}^{1}\text{H})$ versus $\delta({}^{11}\text{B})$ for the thiaboranes *exo*-6-L-*arachno*-4-NB₈H₁₁ [where L = py (*IIa*, O), quin (*IIb*, \bullet), i-quin (*IIc*, \Box), uro (*IId*, \blacksquare), and MeCN (*IIe*, Δ)]. The line drawn has a slope $\delta({}^{1}\text{H})/\delta({}^{11}\text{B})$ ca 1 : 16 and intercept +3.2 ppm in $\delta({}^{1}\text{H})$. The lower diagram shows stick representations of the chemical shifts and relative intensities in the ${}^{11}\text{B}$ spectra of these compounds, together with equivalent data for the anion [*arachno*-4-NB₈H₁₂]⁻ (*III*)

of the ¹¹B and ¹H shielding patterns for equivalent compounds in the three isostructural series that consist of the carbaboranes¹³ ($E = CH_2$), the present azaboranes, and thiaboranes¹² (E = S) of schematic structure *B* reveals a marked similarity between most of the ¹¹B and ¹H resonances for corresponding positions. Also the order of shielding by individual ligands L at the substituted site B(6) is practically identical for all three series of compounds.

In connection with this work we also present complete assignments of all the ¹H and ¹¹B resonances for the neutral azaborane *arachno*-4-NB₈H₁₃ *Ia*, for which previously only tentative ¹¹B assignments have been presented^{7,8} together with the hitherto unreported data for the species we tentatively identify as the [*arachno*-4-NB₈H₁₂]⁻ anion *III* (Table III and Figs 1 and 2). The ¹¹B spectrum of the anion *III* consists of a set of 2 : 1 : 2 : 1 : 2 resonances. This 2 : 2 : 2 : 1 : 1 intensity pattern may imply a fluxionality between structures *IIIa* and *IIIc* or an intermediate static structure *IIIb* (as occurs for the isoelectronic [SB₈B₁₁]⁻ anion¹⁰) for the anion *III* (see Scheme 1). Figure 1 (lower diagram) shows that there is a marked ¹¹B shielding parallel between *III* and the *arachno* species *IIa* – *IIe* when the ¹¹B chemical shifts are averaged across the effective mirror plane. This would be expected with *III* having structure *IIIc* (approximating to *B*, where $L = H^-$), which may also involved in the dynamic equilibrium as in Scheme 1. Interestingly, however, we have not yet been able to observe either the NH(6) or the μ -H(6,7;7,8) (for *IIIa)/endo*-H(6,8) (for *IIIb* and *IIIc*) ¹H resonances by ¹H NMR spectroscopy, even though the former is very apparent in the spectra of compounds *IIa* – *IIe*.

 $\delta(^{1}B)$, ppm

and the latter very apparent¹⁰ in the spectrum of the isoelectronic [*arachno*-4-SB₈H₁₁]⁻ anion. It may be that the Brønsted acidities of the NH(6) and the μ -H(6,7;7,8)/*endo*-H(6,8) sites are very similar, and that there is dynamic exchange between them in solution containing *III* at room temperature, in accord with Scheme 1.

Figure 2 (lower diagram) also demonstrates a graphical intercomparison between individual ¹¹B shifts for compound *Ia* and those for the two other isostructural neutral species of the nine-vertex *arachno* series, $4-CB_8H_{14}$ (*Ic*; refs^{3,4,19}) and $4-SB_8H_{12}$ (*Ib*;

TABLE II

ïВ	and	'Η	chemical	shifts	for the	compounds	s exo-6-L-arachno-4-NB ₈ H ₁₁ (IIa – IIe) in CDCl ₃ at
294	- 29	97 K	$\delta(^{11}\mathrm{B})^a$	$^{1}J(^{11}\text{B})$	8- ¹ H) in	parentheses	s, $\delta({}^{1}\mathrm{H})^{a}$ in square brackets

Compound	BH(9)	BH(5)	BH(2)	BH(7)	BH(6) ^b	BH(8) ^c	BH(1)	BH(3)	μ-8,9	μ-7,8
IIa	+2.9	-0.8	-11.1	-15.8	-25.4	-37.9	-42.2	-46.4	_	_
	(150)	(144)	(136)	(138)	(124)	(144/71)	(169)	(143)	_	-
	[3.30]	[3.12]	[2.02]	[2.04]	[0.94]	[0.86]	[0.81]	[0.11]	[-0.74]	[-2.98]
IIb	+3.4	-1.7	-9.9	-14.1	-28.0	-37.0	-41.6	-46.4	-	-
	(136)	(141)	(132)	(126)	(98)	(129/66)	(168)	(144)	-	-
	[3.48]	[3.16]	[2.31]	[2.14]	[1.10]	[1.10]	[1.00]	[0.27]	[-0.53]	[-2.72]
Ис	+2.8	-0.8	-10.8	-15.4	-25.3	-37.4	-41.8	-46.5	_	_
	(132)	(143)	(132)	(124)	(83)	(128/61)	(168)	(143)	-	-
	[3.39]	[3.21]	[2.21]	[2.21]	[1.06]	[1.03]	[0.96]	[0.28]	[-0.67]	[-2.83]
IId	+3.3	-3.4	-15.5	-18.6	-27.5	-38.1	-42.9	-47.1	_	_
	(150)	(143)	(139)	(136)	(117)	(144/74)	(169)	(143)	-	-
	[3.24]	[3.02]	[1.79]	[1.79]	[-0.65]	[0.77]	[0.75]	[0.02]	[-0.95]	[-3.35]
IIe	+2.3	-2.0	-11.2	-13.5	-39.2	-36.6	-41.3	-47.9	_	-
	(147)	(147)	(144)	(140)	(116)	(152)	(170)	(144)	-	-
	[3.26]	[3.04]	[2.01]	[2.15]	[-0.05]	[0.98]	[0.96]	[0.08]	[-0.90]	[-3.14]

^{*a*} Assignment by relative intensities, [¹¹B-¹¹B]-COSY (measured for all compounds; observed crosspeaks: 1-2m-s, 1-3m-s, 2-3m-s, 2-5s, 2-6m-w, 2-7m, 3-8s, 3-9m-w, 5-6m, 6-7s-m; s = strong, m = medium, w = weak), and ¹H-{¹¹B(selective)} experiments (for ¹H); additional ¹H signals of the ligands L: *IIa*, 8.8 to 7.5 m, 5 H (py); *IIb*, 10.91 to 7.46 m, 7 H (quin); *IIc*, 9.91 to 7.77 m, 7 H (i-quin); *IId*, 4.69 to 4.35 m, 12 H (uro); *IIe*, 2.12 s, 3 H (MeCN); additional ¹H signals of the cage NH groups: *IIa*, 3.64; *IIb*, 3.56; *IIc*, 3.52; *IId*, 3.50; *IIe*, 3.42. ^{*b*} Resonances of the *endo* hydrogen atoms in the ¹H spectra. ^{*c*} Doublet of triplets in the ¹¹B spectra due to μ -H splitting.

2250

ref.¹⁰). As expected for this isostructural^{8,20} set, it is seen that the general shielding patterns are closely related, the most significant differences being at the B(1) site α to the heteroborane constituent. Although these shielding patterns are obviously related, the changes at the other sites are, interestingly, not small: in particular, the 6,8 sites β to the heteroatom are affected more than the α -5,9 positions, showing that the electronic effects of the heteroatom on the cluster are not localized. Included also in Fig. 2

Scheme 1

TABLE III

¹¹B and ¹H chemical shifts for the compounds *arachno*-4-NB₈H₁₃ (*Ia*) and [*arachno*-4-NB₈H₁₂]⁻ [tmnd]⁺ *III* in CDCl₃ at 294 – 297 K. $\delta(^{11}B)^a$, ¹*J*(¹¹B-¹H) in parentheses, $\delta(^{1}H)^a$ in square brackets

Compound	BH(7)	BH(5,9)	BH(1)	BH(2,3)	BH(6,8)	μ-6,7/7,8	μ-5,6/8,9
Ia	+9.2 (153) [+3.97]	-6.2 (153) [+3.01]	-24.4 (174) [+2.16]	-45.01 (148) [+0.29]	-47.0 (148) [+0.76]	_ _ [-0.77]	- - [-2.38]
111	-20.6 (-) ^b [+1.25] or [+2.83]	+2.0 (144) [+3.10]	-43.1 $(-)^{b}$ [+0.68]	-28.9 (132) [+0.87]	-43.2 (-) ^b [+0.09]	_ (-) ^c	_ _ [-1.25]

^{*a*} Assignment by relative intensities, $[^{11}B^{-11}B]$ -COSY (observed cross-peaks for *Ia*: 1-2,3s, 1-5,9w, 2,3-5,9s, 2,3-6,8s, 6,8-5,9s, 6,8-7m; observed cross peaks for *III*: 1-2,3s, 1-5,9m, 2,3-5,9s, 2,3-6,8s, 6,8-5,9m, 6,8-7m; s = strong, m = medium, w = weak), and ${}^{1}H$ -{ ${}^{11}B$ (selective)} experiments (for ${}^{1}H$); $\delta({}^{1}H)$ for NH(4) + 2.94 ppm (for *Ia* in C₆D₆)⁷. ^{*b*} Value uncertain. ^{*c*} ¹H resonances for μ -H(6,7;7,8)/*endo*-H(6,8) and NH(6) not observed (see text).

2252

(lower diagram) are the shielding data for the $[arachno-4-NB_8H_{12}]^-$ anion *III*. This now has a considerably perturbed ¹¹B shielding pattern compared to the neutral species of type *A*, emphasizing its greater similarity with the ligand adducts of structure *B*, as demonstrated in Fig. 1, and as discussed above.

The authors thank the Academy of Sciences of the Czech Republic (Grant No. 432402), the UK SERC (Grant No. F43215), the Royal Society (London, U.K.) and Borax Research Ltd (Chessington, U.K.) for support (to T. J. and B. S.), and Dr R. A. Walker, Dr D. M. Wagnerova, and Prof. N. N. Greenwood for their helpful interest. We also thank Mr D. Singh for mass spectrometric measurements and Dr X. L. R. Fontaine for some NMR experiments in the early stages of this work.

REFERENCES

- Stibr B., Plesek J., Hermanek S.: Advances in Boron and Boranes (J. F. Liebman, A. Greenberg and R. E. Williams, Eds), Chap. 3, p. 33. VCH Publishers, New York 1988.
- 2. Stibr B.: Chem. Rev. 92, 225 (1992).
- 3. Stibr B., Base K., Hermanek S., Plesek J.: J. Chem. Soc., Chem. Commun. 1976, 150.
- 4. Base K., Stibr B., Dolansky J., Duben J.: Collect. Czech. Chem. Commun. 46, 2345 (1981).
- Base K., Plesek J., Hermanek S., Huffman J., Ragatz P., Schaeffer R.: J. Chem. Soc., Chem. Commun. 1975, 934.
- 6. Base K., Hanousek F., Plesek J., Stibr B., Lycka J.: J. Chem. Soc., Chem. Commun. 1981, 1162.
- 7. Base K.: Collect. Czech. Chem. Commun. 48, 2593 (1983).
- 8. Dolansky J., Hermanek S., Zahradnik R.: Collect. Czech. Chem. Commun. 46, 2467 (1981).
- 9. Base K., Gregor V., Hermanek S.: Chem. Ind. (London) 1979, 743.
- Base K., Fontaine X. L. R., Greenwood N. N., Jones J. H., Kennedy J. D., Stibr B., Wallbridge M. G. H.: Polyhedron 8, 2089 (1989).
- 11. Jelinek T., Kennedy J. D., Stibr B.: J. Chem. Soc., Chem. Commun. 1994, 667.
- 12. Holub J., Stibr B., Kennedy J. D., Thornton-Pett M., Jelinek T., Plesek J.: Inorg. Chem., in press.
- Plesek J., Stibr B., Fontaine X. L. R., Jelinek T., Thornton-Pett M., Hermanek S., Kennedy J. D.: Inorg. Chem. 33, 2994 (1994).
- Plesek J., Stibr B., Fontaine X. L. R., Kennedy J. D., Hermanek S., Jelinek T.: Collect. Czech. Chem. Commun. 56, 1618 (1991).
- 15. Kennedy J. D., Fontaine X. L. R., McGrath M., Spalding T. R.: Magn. Reson. Chem. 29, 711 (1991).
- 16. McFarlane W.: Proc. R. Soc. London, A 306, 185 (1986).
- 17. Hutton W. C., Venable T. L., Grimes R. N.: J. Am. Chem. Soc. 106, 29 (1984).
- 18. Fontaine X. L. R., Kennedy J. D.: J. Chem. Soc., Dalton Trans A 1987, 1573.
- 19. Howarth O. W., Jasztal M. J., Taylor J. G., Wallbridge M. G. H.: Polyhedron 4, 1461 (1985).
- 20. Hermanek S.: Chem. Rev. 92, 325 (1992); and references therein.

Translated by the author (B. S.).